Introduction
Diabetic foot ulcers (DFUs) are a major and often debilitating complication of diabetes, contributing significantly to patient morbidity, mortality, and healthcare costs. Despite advancements in diabetes care, the incidence of DFUs remains high, with a substantial impact on quality of life and healthcare resources. A recent study published in the journal Frontiers in Endocrinology compared the use of electrochemical skin conductance (ESC) to the current standards in DFU detection. The current method for assessing DFU risk primarily involves clinical examination, including the monofilament test, which is subjective and dependent on the examiner’s skills. Therefore, there is a need for objective, reproducible, and reliable methods for early detection of at-risk patients.
One of the many complications of diabetes is peripheral neuropathy, which, if left untreated, can lead to DFUs. Electrochemical Skin Conductance (ESC) is a promising non-invasive diagnostic tool that can be used to assess autonomic nerve activity. ESC is measured in-clinic using Sudoscan, which assesses small fiber peripheral neuropathies, specifically the innervation around the sweat glands, by stimulating the glands and measuring the conductance (in µS) of chloride ions contained in the sweat. Lower ESC values indicate more severe neuropathy. This study investigates the association between ESC and DFU risk stratification, offering a potential new approach to managing and preventing diabetic foot complications.
Methods
This study was a retrospective analysis involving 2,149 diabetic patients from four clinics in Greater Paris University Hospitals, the largest hospital system in Europe and one of the largest in the world. The primary aim was to evaluate the relationship between ESC measurements and DFU risk, as classified using the 2016 International Working Group on Diabetic Foot (IWGDF) grading system. This grading system assigns DFU risk based on clinical evaluation, including the presence of neuropathy, ulceration, and other factors.
To assess the predictive performance of ESC in DFU risk stratification, the study incorporated a range of factors: age, sex, type of diabetes, and results from the monofilament test, which is a standard assessment of peripheral neuropathy. The study employed regression and Receiver Operating Characteristic (ROC) analyses to explore the predictive value of ESC measurements for different DFU risk categories.
Results
The study revealed a significant correlation between ESC values and DFU risk grades (p<0.001). Specifically, lower FESC values were associated with higher grades of DFU risk, suggesting that reduced sweat gland function, indicative of small fiber neuropathy, plays a role in the progression of foot ulcers in diabetic patients.
One of the most noteworthy findings of this study was that ESC measurements were able to identify patients at risk for DFUs who would not have been classified as high risk using the standard IWGDF grading system. Specifically, ESC detected autonomic dysfunction and small fiber nerve involvement in 43% patients classified as grade 0 (13% with severe cases of neuropathy), who otherwise showed no obvious signs of risk through traditional assessments, showing better granularity in the lower grades for better risk stratification.
The findings of this study suggest that Electrochemical Skin Conductance (ESC) provides a valuable, reproducible, and operator-independent tool for assessing DFU risk. ESC measurements offer an objective method for identifying early signs of small fiber neuropathy, a critical factor in the development of DFUs. Unlike traditional risk stratification, which relies heavily on clinical judgment and may overlook early-stage neuropathy, ESC can detect subtle changes in nerve function that precede visible foot ulcers.
The ability of ESC to detect at-risk patients in the grade 0 category, who would otherwise be overlooked by conventional classification methods, highlights its potential role in preventing DFUs. By identifying patients with early-stage nerve dysfunction, ESC could facilitate earlier intervention, potentially reducing the incidence of foot ulcers, amputations, and associated healthcare costs.
The ability to detect DFU risk early using ESC shows promise for the prevention of amputation.Therefore, we conclude that feet skin conductance is a relevant parameter for detecting diabetic foot syndrome, specifically at an early stage when there is still no presence of feet ulceration or wounds. A recent meta-analysis on ESC supports this conclusion, indicating that ESC, when combined with temperature measurements, serves as a valuable tool for the early detection of diabetic foot syndrome. ESC can be measured in-clinic, using Sudoscan, and at home using Withings Body Pro 2. Measuring ESC through home use of the Body Pro 2 scale allows for additional data collection and better assessment of trends and progression between appointments. Through this enhanced monitoring of DFU risk, care teams can better risk-stratify and provide targeted care that could prevent amputations and complications.
Interested in partnering with us?
Contact Us